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Abstract—The output voltage of a solar cell varies due to 

environmental conditions such as changes in temperature and 

solar radiation intensity which means that the output power of 

the photovoltaic (PV) arrays is not constant. The PV output 

power has a unique maximum power point in every operation 

conditions. In order to extract the highest efficiency of a solar cell 

and optimize the PV system performance, it is necessary to track 

maximum power of a PV cell (MPPT). This paper presents a 

comparative study of Sliding Mode Controller (SMC) and 

Incremental Conductance (INC) algorithm to track maximum 

power point of photovoltaic arrays. Both controllers maximize 

the output power of the PV system by adjusting the duty cycle of 

a DC/DC boost converter. The simulations under different 

environmental variations confirm the stability and the robustness 

of both controllers however it is shown that the SMC has a better 

performance and is fast in precise. 

 
Index Terms— DC/DC boost converter, incremental 

conductance, maximum power point tracking, photovoltaic 

system, sliding mode controller. 
 

 

I. INTRODUCTION 

T is an undisputable fact that the energy is one of the main 

vital elements of human life. In recent years the fossil fuels 

energy resources have decreased significantly and the 

greenhouse gasses are increasing considerably that cause the 

global warming effects and natural disasters. These obstacles 

highlight the necessity for an alternative energy source that is 

environmentally friendly and economical. Among renewable 

energy sources (wind, solar, etc.), solar energy is the most 

popular one which is easily accessible and clean.  

The output characteristics of a PV cell highly depend on the 

environmental changes so the maximum power point (MPP) 

of the PV system is unique in every insulation and 

temperature. To optimize the PV system performance, it is 

important to gain the maximum power from the PV module by 

stabilizing the PV power at its optimal point (MPP). Vast 

numbers of MPPT algorithms have been presented these years. 

The most common strategy is to adjust the duty cycle of a 

converter according to the output power of the PV module to 

place the PV system at its maximum power whiles the 
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variations of insulation and temperature can occur at any time 

[1]- [4]. A look-up table method is proposed in [5] which is 

based on the parameters and typical curves of the PV module 

under different situations. Curve-fitting algorithm in [6] 

models the nonlinear characteristics of a PV by mathematical 

approximations. The most obvious drawback for these 

methods is that they need a large memory to store data which 

increases the economic costs. Another technique that is 

presented in [7], [8] is open-circuit voltage method. At this 

algorithm the MPPT unit approximates a linear equation 

between the PV voltage at MPP )( MPPV and the PV output 

voltage. The short-circuit current method has the similar 

principles of the open-circuit voltage algorithm but it uses PV 

current instead of PV voltage [9], [10]. These algorithms are 

offline techniques in other words they will not respond 
acceptable at changeable environmental conditions which 

means losing power. The techniques that are mostly used to 

track maximum power point are Perturb and Observe (P&O) 

and hill-climbing algorithms [11]-[15]. The principle of these 

two techniques is perturbing the PV voltage ( PVV ) (by 

changing the duty cycle of the converter) and observing the 

PVP . If PVP  increases, further adjustments in the duty cycle 

are tried in the same direction until power no longer increases. 

Despite of that the implementations of these methods are 

simple; the output power oscillation problem can be counted 

as big disadvantage of them. Incremental Conductance method 

in [16] is a famous MPPT algorithm is based on the fact that 

the PVP
 
slope is zero at MPP. Sliding mode controller is 

introduced in [17], [18]. In this method first the sliding surface 

that determines the optimal states of the system variables        

),( MPPIMPPV  is defined and then the SMC converges the 

system controllable states to it (MPPT). Fuzzy Logic 

Controller (FLC) in [19], [20] does not need any exact model 

of the PV system and tracks the maximum power properly. 
This paper provides a comparative study of sliding mode 

controller and INC method to track maximum power of the 

PV module and evaluates their performance through 

simulation results for different conditions. The paper is 

organized as follow: The PV cell characteristics are given in 

Section II.  MPPT system modeling is described in section III. 

Simulation results and conclusion are presented in Section IV 

and V, respectively. 
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Fig.1. Equivalent circuit model of a PV cell. 

 

II. PV CELL CHARACTERISTICS  

The equivalent circuit model of a PV is shown in Fig.1. It 

consists of a light-generated current source ( phI ), Diode (D), 

Series and Parallel resistances ( shRsR , ) [12]: 

The equations of the PV module are as follows:  
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where, phI is the light generated current, G and 0G are solar 

irradiance and reference solar irradiance, respectively. scrI is 

the PV short-circuit current at reference condition, T  and rT

are the temperature and reference temperature of the solar cell, 

respectively. gE  denotes the band-gap energy of the solar 

cell, q is the electron charge, sN is the number of solar cells 

in series, ik  is the short-circuit temperature coefficient, and   

k is the Boltzmann’s constant.  

In this paper the Siemens photovoltaic module has been 

used for simulations [18]. The parameters of the module are 

given in Table I. The PV module is made of 72 cells 

connected in series. 
In Fig.2 ( PVPV VI  ) characteristics of the PV module are 

plotted for different insulations and temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.2. (IPV_VPV) characteristics of the PV module. 

Fig.3 and Fig.4 show the PV output power ( PVP ) for 

various insulations and temperatures. According to Fig.3 and 

Fig.4 PVP  will increase if insulation increase and 

temperature decrease and vice versa. Overall it can be said the 

best environmental condition for the PV module is the high 

solar irradiance and the low temperature. 

In Fig.3 and 4, for every environmental condition there is a 

unique point in PVP  curve which is at maximum value. This 

maximum point needs to be tracked by the controller unit. 

 

 
Fig.3. PV output power under different irradiances. 
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TABLEI 

PARAMETERS OF THE PV MODULE 

Parameter Value 

Ideality factor ( A ) 1.12 

Band-gap energy ( gE ) 1.12 V 

PV short-circuit current ( scI ) 3.45 A 

Short-circuit temperature coefficient ( ik ) 1.7 C/mA   

Number of cells in series ( sN ) 72 

PV open-circuit voltage ( ocV ) 43.5 V 
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Fig.4. PV output power under different temperatures. 

III. MPPT SYSTEM MODELING 

Fig.5 depicts the overall PV system block diagram that 

includes three main parts: PV module, DC/DC boost converter 

and MPPT unit. 

Briefly, the MPPT unit measures the output power of the 

PV module ( PVP ) and decides to change the duty cycle of 

the converter or not, accordingly. 

A. DC/DC Boost Converter 

The equivalent circuit model of a DC/DC boost converter is 

illustrated in Fig.6. 
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Fig.5. PV system block diagram. 

 

C1 C2

+ +

-

iL

io

Vo

-

Vpv

iC1 iC2

ipv

(a)

C1 C2

+ +

-

iL

io

Vo

-

Vpv

iC1 iC2

ipv

(b)

Fig.6. Equivalent circuit of a boost converter in two operation states ((a): S=0, 

(b): S=1). 

 

The converter has two states of working according to the 

position of the switch S: 

a) When the switch is off (S=0): 
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b) When the switch is on (S=1): 
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where oV is the converter’s output voltage, 1C and 2C are 

the capacitors, Li and LR  are the conductance current and 

load respectively. Equations (4) to (9) can be combined into 

the one set of state equations (  10,S ): 

   SoVLiPVV
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B. Incremental Conductance Method 

Because of being easily implemented, INC algorithm is 

used in many MPPT units [21]-[24]. The traditional INC is not 

capable to track maximum power point of the PV module 

under sudden changes in environmental conditions. INC is 

based on this fact that the slope of the PV output power( PVP ) 

is equal to zero at the maximum power point (12): 
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           (12)

  
 

 

According to (12), when 
PVi

PVV

PVdi

PVdV
 is confirmed the 

PV system is at its optimal power point. The flowchart of the 

modified INC algorithm is illustrated in Fig. 7 where k, k-1 are 

the sampling times at t, t-1 respectively.  
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Fig.7. INC flowchart. 

 ki*  is the PV output current at MPP that is defined as the 

increment of the PV current measurement (  kPVi ) not as the 

increment of the  ki*  at previous sampling time (  1ki* ). 

This modification enables the system to decide and respond 

faster under abrupt variations in environmental conditions 

[25]. 

Equations (4) to (9) can be written in the form of the 

discrete time system equations considering the sampling time 

sT  as below: 

       koV
L

sT
kPVV

L

sT
kLikLi 1

   
                 (13) 

       kPVi
C

sT
kLi

C

sT
kPVVkPVV

11
1 

   
            (14) 

     koV
RC

sT
kLi

C

sT
koV 














2
1

2
1

   

                    (15) 

     kPVV
L

sT
kLikLi 1

   
                                 (16) 

       kPVi
C

sT
kLi

C

sT
kPVVkPVV

11
1 

     
            (17) 

   koV
RC

sT
koV 














2
11

    

                                          (18) 

According to (13) to (18), the controllable variables 

PVVPVi ,  can now be predicted for the next sampling time 

so the control actions can be obtained for the present time and 

the future periods, both. 

C. Sliding Mode Control 

Designing of the sliding mode controller consists of two 

states: 1. defining of the sliding surface, 2. designing of the 

control signal. The sliding surface is selected as the desirable 

values of the controllable variables and the control signal 

guarantees that the system states converge to the sliding 

surface and remain on it.  

1. Designing the sliding surface: 

As previously mentioned, the slope of the PV output power 

is zero at MPP. Therefore if we define the sliding surface as 

 
0





PVV

PViPVVPVP ,
the PV power will be maximized when 

the system state variables converge to the sliding surface [17], 

[18], [26]. 
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In (19),
 PVi

PVV
PVR   is the equivalent load that is connected 

to the PV module. The non-trivial solution of the (19) is

02 
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PViPVR  so the sliding surface ( ) can be 

defined as: 
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As it can be seen in Fig.8 that determines the duty cycle of 

the boost converter (δ) in all operation regions, its control 

signal can be chosen as below: 

δ increaseδ decrease
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P
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ow

er
 

PV Voltage

σ<0 σ>0

Fig.8. Duty cycle of the boost converter in all operation regions. 
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where eq  is the equivalent control signal. 

The equivalent control signal can be obtained as follow 

[27]: 
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The duty cycle of the converter must be between 0 and 1,

10  eq , hence the real control signal is defined as: 
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where k is a positive constant (k=0.01). 

IV. SIMULATION RESULTS 

All simulations in this paper have been done in 

MATLAB/SIMULINK. In this study, Siemens SM110-24 PV 

panel has been selected as a PV cell. Table II summarizes the 

main specifications for simulations. 

The solar irradiance and the temperature variations are 

illustrated in Fig.9. The theoretical maximum powers of the 

PV panel for every irradiance and temperature are tabulated in 

Table III. 

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
Fig.9. Simulation condition. 

 

 

 

 
 

 

 
 

 

 
 

The PV output power with SMC and INC is shown in 

Fig.10. The plot depicts that the both controllers can track 

maximum power of the PV module under environmental 

variations, however, the power fluctuations with SMC is much 

less than INC that means SMC is more robust towards the 

irradiance and the temperature variations.  

PV extracted energy is defined as (24) in order to compare 

the controllers’ efficiency. In Table IV, extracted PV energies 

for each controller are shown. The theoretical maximum PV 

energy during simulation is 16.909 (J). 

PV Extracted Energy=  
30

0

.
dtPVP

  

                                 (24) 

According to Table 4, sliding mode controller increases the 

PV system efficiency up to 5% in comparison to INC. In other 

words, the energy dissipation with SMC is less than INC. 

If the error is defined as the difference between the PV 

theoretical maximum power and the PV output power ((25)), 

Fig.11 illustrates the error for each controller. Fig.11 verifies 

that SMC is more stable around MPP and the PV output power 

with SMC converges to MPP faster than INC while it is more 

precise. 

PVPMPPPError 
     

                                                  (25) 

 

 
Fig.10. PV Output Power with SMC and INC. 
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TABLEII 

MAIN SPECIFICATIONS 

Parameter Value 

Inductance (L) 1.5 mH 

Capacitance (C1) 100 µF 

Capacitance (C2) 500 µF 

MPPT current increment (𝑖𝑖𝑛𝑐) 100 mA 

MPPT current increment (𝑉𝑖𝑛𝑐) 150 mV 

Load (R) 50 Ω 

 

TABLEIII 
THEORETICAL MAXIMUM POWERS 

Irradiance, G 

(W/m2) 

Temperature, T 

(°C) 

Theoretical Maximum Power, 

PMPP (W) 

850 38 72.64 

600 32 53.39 

480 28 43.07 

 

TABLEIV 

PERFORMANCE OF THE CONTROLLERS 

Controller Extracted Energy (W) Efficiency (%) 

SMC 16.6718 98.6 

INC 15.8241 93.6 
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Fig.11. PV output power error with SMC and INC. 

V. CONCLUSION 

In this paper, a comparative study of sliding mode 

controller and incremental conductance method to track 

maximum power of the photovoltaic arrays provided. 

Simulation results indicate that both controllers can track 

maximum power under environmental variations. Comparing 

SMC with INC demonstrates that the PV output power 

chattering around MPP has decreased considerably using SMC 

therefore the PV system response is more stable. In addition 

SMC is faster and more precise than INC. As a result, SMC 

can increase the PV system efficiency up to 5% which results 

in less energy losses. 
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